3.528 \(\int \frac{x^6 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=365 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{b} c-5 \sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{12 b^{9/4} \sqrt{a+b x^4}}+\frac{3 c x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{3 \sqrt [4]{a} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 b^{5/2}}+\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 b^2 \sqrt{a+b x^4}}+\frac{d \sqrt{a+b x^4}}{b^2}+\frac{e x \sqrt{a+b x^4}}{3 b^2}+\frac{f x^2 \sqrt{a+b x^4}}{4 b^2} \]

[Out]

(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*b^2*Sqrt[a + b*x^4]) + (d*Sqrt[a + b*x^
4])/b^2 + (e*x*Sqrt[a + b*x^4])/(3*b^2) + (f*x^2*Sqrt[a + b*x^4])/(4*b^2) + (3*c
*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sqrt[a] + Sqrt[b]*x^2)) - (3*a*f*ArcTanh[(Sqrt[b
]*x^2)/Sqrt[a + b*x^4]])/(4*b^(5/2)) - (3*a^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt
[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)],
 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4]) + (a^(1/4)*(9*Sqrt[b]*c - 5*Sqrt[a]*e)*(Sqrt[
a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan
[(b^(1/4)*x)/a^(1/4)], 1/2])/(12*b^(9/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.878707, antiderivative size = 365, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 11, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.367 \[ \frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{b} c-5 \sqrt{a} e\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{12 b^{9/4} \sqrt{a+b x^4}}+\frac{3 c x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{3 \sqrt [4]{a} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a f \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{4 b^{5/2}}+\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 b^2 \sqrt{a+b x^4}}+\frac{d \sqrt{a+b x^4}}{b^2}+\frac{e x \sqrt{a+b x^4}}{3 b^2}+\frac{f x^2 \sqrt{a+b x^4}}{4 b^2} \]

Antiderivative was successfully verified.

[In]  Int[(x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*b^2*Sqrt[a + b*x^4]) + (d*Sqrt[a + b*x^
4])/b^2 + (e*x*Sqrt[a + b*x^4])/(3*b^2) + (f*x^2*Sqrt[a + b*x^4])/(4*b^2) + (3*c
*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sqrt[a] + Sqrt[b]*x^2)) - (3*a*f*ArcTanh[(Sqrt[b
]*x^2)/Sqrt[a + b*x^4]])/(4*b^(5/2)) - (3*a^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt
[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)],
 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4]) + (a^(1/4)*(9*Sqrt[b]*c - 5*Sqrt[a]*e)*(Sqrt[
a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan
[(b^(1/4)*x)/a^(1/4)], 1/2])/(12*b^(9/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 0.901135, size = 267, normalized size = 0.73 \[ \frac{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (\sqrt{b} \left (a \left (12 d+10 e x+9 f x^2\right )+b x^3 \left (-6 c+6 d x+4 e x^2+3 f x^3\right )\right )-9 a f \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )\right )+2 i \sqrt{a} \sqrt{b} \sqrt{\frac{b x^4}{a}+1} \left (5 \sqrt{a} e+9 i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+18 \sqrt{a} b c \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{12 b^{5/2} \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^6*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(Sqrt[b]*(a*(12*d + 10*e*x + 9*f*x^2) + b*x^3*(-6*c +
 6*d*x + 4*e*x^2 + 3*f*x^3)) - 9*a*f*Sqrt[a + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[
a + b*x^4]]) + 18*Sqrt[a]*b*c*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sq
rt[b])/Sqrt[a]]*x], -1] + (2*I)*Sqrt[a]*Sqrt[b]*((9*I)*Sqrt[b]*c + 5*Sqrt[a]*e)*
Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(12*S
qrt[(I*Sqrt[b])/Sqrt[a]]*b^(5/2)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.019, size = 378, normalized size = 1. \[ -{\frac{c{x}^{3}}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{{\frac{3\,i}{2}}c\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{3\,i}{2}}c\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{d \left ( b{x}^{4}+2\,a \right ) }{2\,{b}^{2}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{aex}{2\,{b}^{2}}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{ex}{3\,{b}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{5\,ae}{6\,{b}^{2}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f{x}^{6}}{4\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{3\,{x}^{2}af}{4\,{b}^{2}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{3\,af}{4}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){b}^{-{\frac{5}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)

[Out]

-1/2*c/b*x^3/((x^4+a/b)*b)^(1/2)+3/2*I*c/b^(3/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/
2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/
2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-3/2*I*c/b^(3/2)*a^(1/2)/(I/a^(1/2)*b
^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b
*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*d*(b*x^4+2*a)/(b*x^4+
a)^(1/2)/b^2+1/2*e/b^2*a*x/((x^4+a/b)*b)^(1/2)+1/3*e*x*(b*x^4+a)^(1/2)/b^2-5/6*e
*a/b^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^
(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/4*f*
x^6/b/(b*x^4+a)^(1/2)+3/4*f*a/b^2*x^2/(b*x^4+a)^(1/2)-3/4*f*a/b^(5/2)*ln(b^(1/2)
*x^2+(b*x^4+a)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x^{9} + e x^{8} + d x^{7} + c x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2),x, algorithm="fricas")

[Out]

integral((f*x^9 + e*x^8 + d*x^7 + c*x^6)/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 72.375, size = 202, normalized size = 0.55 \[ d \left (\begin{cases} \frac{a}{b^{2} \sqrt{a + b x^{4}}} + \frac{x^{4}}{2 b \sqrt{a + b x^{4}}} & \text{for}\: b \neq 0 \\\frac{x^{8}}{8 a^{\frac{3}{2}}} & \text{otherwise} \end{cases}\right ) + f \left (\frac{3 \sqrt{a} x^{2}}{4 b^{2} \sqrt{1 + \frac{b x^{4}}{a}}} - \frac{3 a \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{4 b^{\frac{5}{2}}} + \frac{x^{6}}{4 \sqrt{a} b \sqrt{1 + \frac{b x^{4}}{a}}}\right ) + \frac{c x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{11}{4}\right )} + \frac{e x^{9} \Gamma \left (\frac{9}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{9}{4} \\ \frac{13}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{13}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

d*Piecewise((a/(b**2*sqrt(a + b*x**4)) + x**4/(2*b*sqrt(a + b*x**4)), Ne(b, 0)),
 (x**8/(8*a**(3/2)), True)) + f*(3*sqrt(a)*x**2/(4*b**2*sqrt(1 + b*x**4/a)) - 3*
a*asinh(sqrt(b)*x**2/sqrt(a))/(4*b**(5/2)) + x**6/(4*sqrt(a)*b*sqrt(1 + b*x**4/a
))) + c*x**7*gamma(7/4)*hyper((3/2, 7/4), (11/4,), b*x**4*exp_polar(I*pi)/a)/(4*
a**(3/2)*gamma(11/4)) + e*x**9*gamma(9/4)*hyper((3/2, 9/4), (13/4,), b*x**4*exp_
polar(I*pi)/a)/(4*a**(3/2)*gamma(13/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{6}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^6/(b*x^4 + a)^(3/2), x)